<abbr id="6vcb1"><tfoot id="6vcb1"><output id="6vcb1"></output></tfoot></abbr>

<style id="6vcb1"><u id="6vcb1"><thead id="6vcb1"></thead></u></style>

<sup id="6vcb1"></sup>
  • 自動駕駛可以應用在什么領域

    2022-01-17 14:26:04 作者:問答叫獸

      【太平洋汽車網】自動駕駛汽車的設計制造面臨著諸多挑戰,如今,各大公司已經廣泛采用機器學習尋找相應的解決方案。汽車中的ECU(電子控制單元)已經整合了傳感器數據處理,如何充分利用機器學習完成新的任務,變得至關重要。潛在的應用包括將汽車內外傳感器的數據進行融合,借此評估駕駛員情況、進行駕駛場景分類。

      車載信息娛樂系統所運行的應用,能從傳感器數據融合系統中獲取數據。舉個例子,如果系統察覺駕駛員發生狀況,有能力把車開到醫院。基于機器學習的應用,還包括對駕駛員的語言和手勢識別以及語言翻譯。相關的算法被分類為非監督和監督算法。它們兩者的區別在于學習的方式。

      監督學習算法使用訓練數據集學習,并且能夠持續學習直到達到設定的置信水平(最小化出錯概率)。監督學習算法分為回歸、分類和異常檢測以及數據降維。

      無監督學習算法,則嘗試挖掘有限數據的價值。這意味著,算法會在可用數據內建立關系,以檢測模式或者將數據集分成子類(取決于之間的相似度)。從廣義上,無監督算法可以可分為關聯規則學習和聚類。

      增強學習算法是另外一種機器學習算法,介于非監督學習和監督學習之間。對于所有訓練的例子,監督學習中有目標標簽,無監督學習中卻完全沒有標簽。強化學習有延遲的、稀疏的標簽——未來的獎勵。

      根據這些獎勵,智能體學習做出恰當行為。去理解算法的局限性和優點,開發更加高效的學習算法,是增強學習的目標。增強學習可以解決大量實際應用,從AI的問題到控制工程或操作研究——所有這些都與開發自動駕駛汽車相關。這可以被分為間接學習和直接學習。

      在獨自動駕駛汽車上,機器學習算法的一個主要任務是持續渲染周圍的環境,以及預測可能發生的變化。這些任務可以分為四個子任務:目標檢測目標識別或分類目標定位運動預測機器學習算法可以簡單地分為4類:決策矩陣算法、聚類算法、模式識別算法和回歸算法。可以利用一類機器學習算法來完成兩個以上的子任務。例如,回歸算法能夠用于物體定位和目標識別或者是運動預測。

      決策矩陣算法決策矩陣算法系統地分析、識別和評估信息集和值之間關系的表現。這些算法主要用于決策。車是否需要剎車或者左轉都是基于算法根據識別、分類和預測對象的下一個動作給出的置信水平。矩陣決策算法由各種獨立訓練的決策模型組合而成。

    (圖/文/攝:太平洋汽車網 問答叫獸)

    >>點擊查看今日優惠<<

      本文導航
      TOP推薦
      相關閱讀
      點擊加載更多
      一级a做免费大全在线观看_国产三级精品三级男人的天堂_欧美激情二区在线播放_人妻中文字幕无码中出
      <abbr id="6vcb1"><tfoot id="6vcb1"><output id="6vcb1"></output></tfoot></abbr>

      <style id="6vcb1"><u id="6vcb1"><thead id="6vcb1"></thead></u></style>

      <sup id="6vcb1"></sup>
    • 色婷婷精品大全在线视频 | 中文字幕亚洲乱码高清 | 中文字幕精品三区 | 一区二区三区国产毛码 | 日本中文字幕aⅴ高清看片 亚洲欧美性综合在线 | 亚洲综合中文字幕在线一区 |